Direct evaluation of myocardial viability and stem cell engraftment demonstrates salvage of the injured myocardium.
نویسندگان
چکیده
RATIONALE The mechanism of functional restoration by stem cell therapy remains poorly understood. Novel manganese-enhanced MRI and bioluminescence reporter gene imaging were applied to follow myocardial viability and cell engraftment, respectively. Human-placenta-derived amniotic mesenchymal stem cells (AMCs) demonstrate unique immunoregulatory and precardiac properties. In this study, the restorative effects of 3 AMC-derived subpopulations were examined in a murine myocardial injury model: (1) unselected AMCs, (2) ckit(+)AMCs, and (3) AMC-derived induced pluripotent stem cells (MiPSCs). OBJECTIVE To determine the differential restorative effects of the AMC-derived subpopulations in the murine myocardial injury model using multimodality imaging. METHODS AND RESULTS SCID (severe combined immunodeficiency) mice underwent left anterior descending artery ligation and were divided into 4 treatment arms: (1) normal saline control (n=14), (2) unselected AMCs (n=10), (3) ckit(+)AMCs (n=13), and (4) MiPSCs (n=11). Cardiac MRI assessed myocardial viability and left ventricular function, whereas bioluminescence imaging assessed stem cell engraftment during a 4-week period. Immunohistological labeling and reverse transcriptase polymerase chain reaction of the explanted myocardium were performed. The unselected AMC and ckit(+)AMC-treated mice demonstrated transient left ventricular functional improvement. However, the MiPSCs exhibited a significantly greater increase in left ventricular function compared with all the other groups during the entire 4-week period. Left ventricular functional improvement correlated with increased myocardial viability and sustained stem cell engraftment. The MiPSC-treated animals lacked any evidence of de novo cardiac differentiation. CONCLUSION The functional restoration seen in MiPSCs was characterized by increased myocardial viability and sustained engraftment without de novo cardiac differentiation, indicating salvage of the injured myocardium.
منابع مشابه
Direct measurement of myocardial viability by manganese-enhanced MRI (MEMRI) tracks the regenerative effects by human pluripotent stem cell derived cardiomyocytes (hPCMs)
Background Human pluripotent stem cell derived cardiomyocytes (hPCMs) may regenerate the myocardium to restore the cardiac function. Manganese-enhanced MRI (MEMRI) enters the cardiomyocytes via calcium channel to generate viability signal directly. Persistent engraftment of the hPCMs associated with increased myocardial viability and LVEF suggests regeneration. This study tests the hypothesis t...
متن کاملManganese-Enhanced Magnetic Resonance Imaging Enables In Vivo Confirmation of Peri-Infarct Restoration Following Stem Cell Therapy in a Porcine Ischemia–Reperfusion Model
BACKGROUND The exact mechanism of stem cell therapy in augmenting the function of ischemic cardiomyopathy is unclear. In this study, we hypothesized that increased viability of the peri-infarct region (PIR) produces restorative benefits after stem cell engraftment. A novel multimodality imaging approach simultaneously assessed myocardial viability (manganese-enhanced magnetic resonance imaging ...
متن کاملManganese-enhanced MRI in the evaluation of cell-based therapy for myocardial restoration
Background To date, the underlying mechanism responsible for the restoration of the injured myocardium following transplantation of stem cells has not been clearly identified. Three major hypotheses have been previously proposed: cardiac differentiation of transplanted cells (de novo myocardial regeneration), paracrine effect on existing myocardium (myocardial salvage) or recruitment of cardiac...
متن کاملMultimodality evaluation of the viability of stem cells delivered into different zones of myocardial infarction.
BACKGROUND We tested the hypothesis that multimodality imaging of mouse embryonic stem cells (mESCs) provides accurate assessment of cellular location, viability, and restorative potential after transplantation into different zones of myocardial infarction. METHODS AND RESULTS Mice underwent left anterior descending artery ligation followed by transplantation of dual-labeled mESCs with superp...
متن کاملGenetic modification of mesenchymal stem cells overexpressing CCR1 increases cell viability, migration, engraftment, and capillary density in the injured myocardium.
RATIONALE Although mesenchymal stem cell (MSC) transplantation has been shown to promote cardiac repair in acute myocardial injury in vivo, its overall restorative capacity appears to be restricted mainly because of poor cell viability and low engraftment in the ischemic myocardium. Specific chemokines are upregulated in the infarcted myocardium. However the expression levels of the correspondi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 116 7 شماره
صفحات -
تاریخ انتشار 2015